

Jan 27-10:05 AM

Nov 1-3:23 PM

Hence the Cosine Law

$$c^2 = a^2 + b^2 - 2abcosC$$

which can also be written as:

 $a^2 = b^2 + c^2 - 2bccosA$

 $b^2 = a^2 + c^2 - 2accosB$

This law is essential for SAS and SSS situations.

Jan 27-10:08 AM

Feb 27-12:47 PM

Case 2: SSS

$$c^{2} = a^{2} + b^{2} - 2abcosC$$

2abcosC = $a^{2} + b^{2} - c^{2}$
2abcosC = $\frac{a^{2} + b^{2} - c^{2}}{2ab}$
cosC = $\frac{a^{2} + b^{2} - c^{2}}{2ab}$
cosC = $\frac{(842)^{2} + (310)^{2} - (601)^{2}}{2(842)(310)}$
cosC $\approx 708964 + 96100 - 361210$
 522040
cosC ≈ 0.8502
C $\approx cos^{-1}(0.8502)$
C $\approx 31.8^{\circ}$

Feb 27-12:52 PM

What if we looked at Zurich's perspective? $cosC = \frac{a^2 + b^2 - c^2}{2ab}$ $cosC = (601)^2 + (310)^2 - (842)^2 - (601)(310)$ $cosC \approx 361210 + 96100 - 708964 - 372620$ $cosC \approx -0.6754$ $C \approx cos^{-1}(-0.6754)$ $C \approx 132.5^{\circ}$

This means that from Paris' perspective the angle between Zurich and Munich is 15.7° .

Exit Ticket: Complete & hand-In. §9.6 #25,27 Homework:

§9.6 #7,11,19,24,28

Jan 28-08:35